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Abstract 
The exponential increase in world population has put enormous increased motorization that led to 
an overwhelming pressure on the earth's finite supply of fossil fuels. For the benefit of human well-
being, renewable and sustainable energy sources must be developed because the lack of fossil fuels 
is negatively affecting the environment and the economy. Algae with high cellulose/starch/lipid 
accumulation can be the best substitute for food crops in the case of economic and environmental 
concerns. These algae can be used to produce bioethanol, a sustainable fuel. Some types of algae 
can directly contribute to the generation of ethanol by producing it during dark-anaerobic 
fermentation. Production of algal-based biofuel is an economically effective and environmentally 
friendly energy source that seems to be a promising alternative for the future generation of biofuel. 
In the 2030 Agenda for Sustainable Development, sustainable transport is mainstreamed across 
several SDGs and targets, especially food security, health, energy, economic growth, infrastructure, 
and cities and human settlements. It aims to make cities and human settlements inclusive and 
identify ways to develop and implement low-carbon and resilient transport strategies. The current 
review describes the state of the field of algae biofuel in the past present and future. The likelihood 
of producing biofuel energy from algae cells in the future can be increased by implementing a 
sophisticated plan to increase biofuel output. Current theories regarding algal potential for 
producing biofuel are compiled in this study. It discusses each phase of the process, scientific 
accomplishments, current issues, and recommendations for future research aims and objectives. 
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Introduction 
First acknowledged at the 1992 United Nations Earth Summit, the role of transportation in 
sustainable development was reaffirmed in Agenda 21, the summit's conclusion document. During 
its nineteenth Special Session in 1997, the UN General Assembly conducted a five-year review of 
Agenda 21 implementation and added that, over the next two decades, transportation is expected 
to be the primary driver of the world's increasing energy demand (in fact, it is currently the largest 
end-use of energy in developed countries and the one that is growing at the fastest rate in the 
majority of developing countries). Additionally, the Johannesburg Plan of Implementation (JPOI), 
the final document of the 2002 World Summit on Sustainable Development, once again included 
the significance of transportation. In the context of infrastructure, public transit systems, 
commodities delivery networks, affordability, efficiency, and ease of transportation, as well as 
enhancing urban air quality and health and lowering greenhouse gas emissions, JPOI offered several 
anchor points for sustainable transportation. 
 
The 21st century widely acknowledges the indefensibility of using fossil fuels due to the ongoing 
shortage of biofuels, making substitutes for petroleum-derived fuels and chemicals increasingly 
necessary. Every day, there is more demand. The resources that are now accessible are dwindling 
quickly and are likely to disappear shortly. In such cases, renewable energy must be given greater 
consideration. Fossil fuels are widely utilized worldwide but unsustainable since they raise CO2 
levels and build up greenhouse gases that harm the ecosystem. Renewable and ecologically friendly 
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fuels must be developed to preserve sustainability and keep the environment clean (Schenk, 2008). 
20% of the world's total energy consumption is attributable to the transportation industry. Even 
though they make up only 5% of all bioenergy consumption today and only 3%-4% of all road 
transport fuel (József Popp et al., 2016). In the long run, next-generation biofuels are likely to require 
the most capacity growth and financing, despite severe competition from other renewable energy 
sources. While most of the attention is focused on liquid biofuels for transportation, globally, only 
a small amount of biomass is now utilized for biofuel production. 
 
There have already been According to (Dufey, 2006), biofuels are liquid fuels derived from the 
biomass of various crops. Biodiesel, an alternative to petroleum-based diesel, is currently being 
generated from cellulose, algal lipids, corn, soy, sugar cane, camelina and jatropha, rapeseed, 
methane, animal fat, and forest products. They are also characterized as the biodegradable fraction 
of industrial waste. Vegetable oils (Shay, 1993), biobutanol (Dürre, 1997), Jatropha curcas (Becker 
and Makkar, 2008), and algae (Roessler et al., 1994; Sawayama et al., 1995; Dunahay et al., 1996; 
Sheehan et al., 1998) are all used in the production of biodiesel. The top three countries in the world 
for producing biodiesel are Brazil, the US, and the EU (Balat, 2007). 35 billion liters of biofuel are 
anticipated to be produced annually (O European Commission, 2006) However, the widespread 
cultivation of these crops for the generation of biodiesel is putting the local economy and food 
supply at risk, raising the cost of food and commodities globally. As a result, efforts are being made 
to find A feedstock for biodiesel made from non-food, non-terrestrial materials like microalgae. 
 
Their ability to develop without much attention to waste nutrients makes them a superior source of 
biodiesel production compared to other sources, which generally consist of food-producing plants 
(Patil et al., 2008; Roberts, 2013). Microalgae are a possible alternative source because they 
effectively use photosynthesis to transform light energy into chemical energy that is then converted 
into organic compounds like lipids and carbohydrates. Carbon dioxide (CO2) found in the 
atmosphere is used to make these molecules. Diatoms (Bacillariophyceae) are a type of algae that 
fix a significant portion of the CO2 in the ocean, ranging between about 41% and 50%. (Field et al., 
1998; Williams and Laurens, 2010). In some circumstances, microalgae synthesize secondary 
metabolites (Mimouni et al., 2012; Gordon and Seckbach, 2012; Bhuyar et al., 2019a; Heydarizadeh 
et al., 2013; Spolaore et al., 2006). Algal cells contain 30% more lipids than other sources, such as 
soybean and palm oils (Lam and Lee, 2012; Kligerman and Bouwer, 2015). They may thrive in dry, 
semiarid, or desert environments and can even grow on non-arable terrain. In comparison to other 
terrestrial crops, they also need less water for growth and survival (Yeang, 2008). Unlike other crops, 
which are frequently only harvested once or twice a year, algae may be harvested all year round 
(Chisti, 2007). Compared to petroleum, algae contain about 80% more energy (Chisti, 2007; 2013). 
Algae can effectively identify and remove hazardous elements from water, aiding in the clean-up of 
wastewater. 
 
Investigating the process of using algae to produce new types of biofuels can help solve this issue. 
Eukaryotic photosynthetic algae may be found in a range of habitats. Algae are photosynthetic 
organisms that use carbon dioxide from the environment and solar energy to create their biomass 
(Demirbas, 2010). They range in size from microscopic to enormous kelps, in number of cells from 
one to many, and in form from spherical to filamentous. Algae are seen favorably for the 
manufacture of biodiesel because of several benefits, including high photosynthetic efficacy, rapid 
growth, and high biomass productivity (Amaro et al., 2011; Demirbas and Demirbas, 2011).  
 
Since microalgae, like diatoms, are among the biological groups most susceptible to hydric stress, 
they are useful markers of previous hydrological conditions. To improve the direction of stream 
management initiatives, benthic diatom communities are crucial for the development of predictive 
models for water quality. With microalgae serving as the main feedstock for biodiesel, there is a lot 
of potential for applications. Diatoms need high water or at least high humidity (Evans, 1960). 
Therefore, we require either an extra water supply for the panel or a water-impermeable chamber. 
Desiccation does not destroy diatoms, and in fact, it enhances the output of oil (Evans, 1958; Evans, 
1959). Because cells can survive longer when drying more slowly (Evans, 1959). They are appropriate 
sources to be cultivated on a large scale due to their remediating and bioindicator roles in 
wastewater treatment and their high sources of biodiesel (Pittman et al., 2011; Kligerman and 
Bouwer, 2015). 
 
The finite quantity of fossil fuels on earth has been under tremendous strain due to the exponential 
rise in energy use and the expanding global population. It is possible to produce energy (biofuel) 
from algal lipids using a sustainable biological process. Algal lipid formation is a naturally occurring 
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process; however, water pollution makes it worse. Point-source pollution is defined as pollution that 
comes from a single source. such as air deposition, runoff from agricultural or industrial stormwater 
systems, residential and industrial wastewater, and non-point source pollution. 
 
Additionally, anthropogenic sources are those that were produced by humans. Prospects are bright 
for the production of algal-based biofuel, which is a cost-effective and ecologically responsible 
energy source. The present state of algal biofuel research is discussed in the current publication. We 
looked at the number and biovolume of lipid bodies (LBs). In areas with severe metal pollution, eight 
distinct diatom species exhibited considerably larger numbers and biovolumes of large bodies (LBs) 
compared to all other studied diatom taxa identified in Khetri and Zawar. Conversely, these diatom 
species in the less polluted areas showed noticeably reduced LB counts and biovolumes. Under Cu 
stress, the genera Navicula and Nitzschia showed considerably higher lipid body induction (in both 
number and biovolume), a finding in line with earlier research (Pandey and Bergey, 2016; Pandey et 
al., 2015). Lipid bodies are often stored by diatoms as a reserve food source, and these bodies may 
become more noticeable in response to certain kinds of stress (Ramachandra et al., 2009). 
especially deprivation from nitrogen (Jiang et al., 2012). The concentration of CO2 and 
Fe+3 determined the fatty acid chain's length and degree of unsaturation. The combination of low 
Fe and 2% CO2 created the ideal environment for the synthesis of short carbon chain FA and the 
accumulation of large amounts of SFA. According to (Carpio et al.,2015), This work presented the 
possibility of adjusting the quantities of CO2 in aeration and Fe+3 in the growth medium to change 
the lipid content of the freshwater green alga, C. vulgaris Beij. 
 
These lipid bodies investigations will also help establish diatoms as a tool for biofuel production. 
Due to Flue gases like CO2 concentration increasing in the environment, the algal biomass 
increases. The algae lipid may be converted into energy (biofuel) using the sustainable biological 
method. Lipid production occurs naturally in algae but it is increased by water pollution and climate 
change. The purpose of this work is to examine how different aspects of climate change affect 
algae's capacity to synthesize lipids. The likelihood of producing biofuel energy from algae cells may 
be increased using a sophisticated technique for boosting biofuel production. This study 
summarises the most recent theories about the production of biofuels using algae. It details each 
phase, scientific breakthroughs, current issues, and recommendations for further research aims and 
objectives. 
 
Potential feedstock for biodiesel production generation by generation 
First-generation 
Food crops are used directly to make first-generation biofuels. the most commonly used first-
generation biofuel feedstock. 1. Most of the corn used to make gasoline-ethanol in the world 
originates from the United States. About one-fourth of the nation's petrol needs could be met by 
maize. Rejected – It is good food and it becomes costly by utilizing it as biofuels (Khammee et al., 
2020), which leads to famine all over the world and increases the demand for additional pesticides 
and fertilizers, which is not only expensive but also pollutes the soil and water. Sugar cane the 
majority of bioethanol is produced in Brazil, which is one of the biggest customers for the product 
and the country's second-largest producer after the US; however, just 1% of Brazil's fertile land is 
used for sugar cane farming. However, due to its monocot status need for a certain environment, 
and lots of sun exposure, sugar cane is not a crop that can be cultivated in most of the world. As a 
result, most nations are unable to produce sugar cane for bioethanol. Soybeans are grown across 
most of North America, South America, and Asia, unlike corn and sugar cane. Rejected: According 
to growing soybeans typically require more energy than can be obtained from their fuel. The 
amount of farmland utilized worldwide for biofuels is presently between 30 and 35 million hectares 
or around 2%. The amount of land needed to grow feedstocks is reduced to 1.5% of the total 
cropland by substituting coproducts for grains and oilseeds (József Popp, et al., 2016). Biofuel is 
created from agricultural oil crops like soybean and oil palm; however, the yield is only about 200 
barrels (30,000 L) of algal oil per hectare of land when oleaginous algae are mass-cultured, which is 
100–200 times more than soybean oil. 
 
Second generation 
Scientists developed second-generation biofuel to lessen the issues first-generation biofuel had. 
Non-food crops are used in second-generation biofuel for example Two categories serve as the 
major divisions for second-generation biofuels. 1. Homogeneous 2. Non-homogeneous. 
Whitewood chips and agricultural and forestry waste are examples of homogenous materials. Non-
homogeneous materials include low-value feedstock and municipal solid waste, according to (Lee 
and Lavoie (2013). 
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A major reason for the rejection of first and second-generation biofuel sources- 
1. The land and water are contaminated by using more pesticides and fertilizers. 
2. The cost of food rises, leading to global food scarcity. Shows in Fig 1. 
3. One of the causes of the hunger crisis is a decrease in agriculture. 
4. Due to the high cost of its growth and harvest, its price is likewise quite high. 
 

 
Fig.1. This image shows food scarcity due to the use of first- and second-generation biofuel 
products 
 
Food versus fuel  
Grain reserves are finite, as is the amount of arable land on Earth. Wheat is usually kept in storage 
for thirty days at a time. Prices decrease and there is a glut when the supply lasts 33 days; at 27 days, 
prices soar. The limited amount of grain currently being utilized for biofuel mostly oilseeds, 
sugarcane, and maize has caused a chain reaction that has doubled the price of all grains. There 
won't be much grain available for emergency food assistance, and this will quickly spread 
throughout the food chain, doubling the price of all foods. In addition, burning grain to power 
expensive cars when starving people raises bioethical concerns. The developed world is getting 
close to the highest yields that are practically possible.  By using more fertilizer and pesticides, 
yields could be somewhat increased, but this would not be very cost-effective and is frequently not 
ideal for the environment. The developing nations who practice subsistence agriculture and have 
yields that are below the third world average will need to provide the long-term yield improvements 
necessary to sustain (strictly speaking) human nutritional needs (which they reduce down).  
 
With grain subsidized from the West and sold below production prices (referred to as "dumped" in 
economic parlance), these emerging regions should be able to produce at a level of competitiveness 
thanks to the doubled grain prices. How rapidly this turnaround can occur is an interesting subject. 
It appears that governments in developing nations should handle this directly, as was recently done 
in Malawi, rather than relying on international help, which is always accompanied by conditions.  
 
Third generation  
However, the renewable source of biodiesel that can supply all of the world's transportation fuel 
needs in the coming years will be microalgal biodiesel. A wide variety of aquatic conditions, from 
freshwater to brackish water, support the growth of microalgal species. Microalgae are capable of 
effectively consuming CO2 and account for between 35% and 40% of global carbon fixation (Bellou 
et al., 2014; Ramaraj et al., 2015). Marine-based microalgae are commonly believed to produce CO2 
sequestration. The greatest choice for biofuel among these possibilities is algae. All microalgae can 
accumulate lipid bodies within their cells that are rich in energy-rich bio-oils (Bhuyar et al., 2019a, 
b). For example, it has been shown that some Botryococcus species retain up to 20% to 45% of the 
lipid content as long-chain hydrocarbons of their dry mass (Gerken et al., 2013). Several thousand 
species of algae, including diatoms, have been investigated for their high lipid content. (Guliyev et 
al., 2001; Sheehan et al., 1998; Sommerfeld et al., 2008; Imahara et al., 2006). Polyunsaturated fatty 
acids, which account for around 25% of the mass of algae, have been determined to have a lower 
average melting point than saturated fats over the previous few decades. Historically, it has been 
believed that a significant portion of third-generation biofuels comes from single-celled algae 
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known as diatoms. Two frustules and a variable number of girdle bands make up the transparent 
diatom silica shell, which shields the oil droplets within and absorbs the light required for their 
formation (Round et al., 1990; Cox et al., 1996). Diatoms are unique in that lipids may be taken from 
them without causing harm, just like cow milk can be without causing death, due to their hard 
siliceous cell wall (frustule). (Ramachandra et al., 2009) named this process of removing lipids from 
diatoms "milking" diatoms. Microscopic cyanobacteria and eukaryotic algae comprise microalgae. 
Compared to conventional oil seed crops, these algae have the potential to produce significantly 
more biodiesel while using quite less water and agricultural area. The expectation that 
biotechnology methods based on microalgae will yield higher productivity than any cultivated 
agricultural plant per unit surface area of Earth is another reason to be interested in them (Cadoret 
and Bernard., 2008, Chisti 2007). For example, it is estimated that the production of diatom oil will 
be two to six hundred times more per unit surface area than oilseed crops (Demirbas, 2009) shown 
in Fig. 2. 

Annual oil Production

Oil (Litres/ha/year)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Palm oil

Microalgae

 
Fig. 2. Potential oil yield per hectare per year (adapted from Emily, 2009) 

 
While algae have been cultivated since the 1950s, mostly for use in pharmaceutical products, their 
capacity to produce biofuels has only recently come to light. Algae, which produces a significant 
amount of biofuel, can produce biomass in marine and freshwater environments (József Popp et al., 
2016). Algal biofuel doesn't contain any dangerous compounds, therefore after burning, the 
environment may be maintained clean. However, producing even 1 kg of algae biomass in a lab 
setting is difficult. We are aware that algae fix 40% of the organic carbon in the planet, and that 
using algae for biofuel will significantly influence both the world's primary productivity and the 
quality of its air. If we can solve all of the aforementioned issues, the diatom is a fantastic source for 
the manufacture of biofuel. But regrettably, the diatom family is declining, there are several reasons 
for this, the primary ones being water pollution and climate change. Numerous factors can 
contribute to water pollution. Of all the types of water pollution, metal pollution poses the greatest 
threat to freshwater diatoms like Navicula. 
 
Mechanism behind lipid production in diatoms stress conditions  
As with other microalgae, diatoms store lipids in oleosomes (Yatsu et al., 1971). Also referred to as 
spherosomes, lipid droplets, lipid bodies, oil droplets, etc., diatoms' oleosome count increases 
under stress as do green algae, as shown by (Davidi, L., Katz, A., and Pick, U. 2012). The endoplasmic 
reticulum and chloroplasts mediate lipid synthesis in diatoms. As is generally believed by numerous 
intricately linked events involving the endoplasmic reticulum, it is most likely fatty acids cannot 
travel directly from chloroplasts to oleosomes, much like in higher plants (Heydarizadeh et al., 
2013). The proteome study of isolated oleosomes from the diatom Fistulifera solaris JPCC DA0580 
has provided the first evidence supporting this theory. This investigation has identified one 
particular protein that exhibits a domain similar to that of the quinone protein alcohol 
dehydrogenase (Nojima et al., 2013). It was found that the protein used a fluorescent tag to target 
the endoplasmic reticulum, where it may play a role in forming oleosomes (Maeda et al., 2014). 
Exocytosis may be the mechanism by which oleosomes are transported, as seen in the 
Chlorophyceae alga Dunaliella salina (Zhang et al., 1993). It is sufficient to note that the evolution 
of diatoms has involved multiple endosymbiotic events, such as those involving cyanobacteria and 
red algae (Moustafa et al., 2009) as well as a chlamydial invasion (Becker et al., 2001), to convince 
one of this intricacy. Diatoms were able to establish themselves in a variety of ecological settings, 
such as freshwater, brackish, marine, and hypersaline settings that varied in terms of pH, 
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temperature, and nutrient availability, thanks to the gene enrichments produced by these events 
(Armbrust et al., 2004). Some people might be categorized as extremophiles (Kociolek, 2007; 
Sternburg et al., 2007).  
 
Their capacity for colonization is a reflection of their highly flexible metabolism, which enables 
them to adjust to a wide range of environmental restrictions (Berth et al., 2001; Nguyen-Deroche et 
al., 2012; Masmoudi et al., 2013; Rohacek et al., 2014). Metabolic changes, such as the synthesis of 
secondary metabolites, are frequently a part of long-term adaptation mechanisms (Sharma et al., 
2012; Darko et al., 2014). The algae "interpret" stress conditions like salinity (Cheng et al., 2014), 
nutrient deficiency (Gacheva and Gigova, 2014), temperature, and high light stress (Hasunuma et 
al., 2014) as "dangerous," leading them to accumulate high-energy molecules like lipids and 
carotenoids (Lemoine and Schoefs, 2010; Sharma et al., 2012; Cheng et al., 2014; Maeda et al., 
2014). For example, it has been demonstrated that diatoms can produce twice or three times as 
much oil when under stress due to silicon or nitrogen depletion (Burrows et al., 2012; Taguchi, S.; 
Hirata and Laws, 1987; Zhang et al., 2014). Algae may produce thick mucus sheaths through 
desiccation, which are frequently discovered to contain oil or starch (Badour and Gergis, 1965). 
Diatoms can store energy as lipids or as chrysolaminarin (Beattie et al., 1961); therefore, we'll need 
to figure out how to bias production in favor of oil. While algae with low oil content, like Dunaliella, 
divide more quickly and can be collected every day, High oil content algae (e.g., Botryococcus) 
mature slowly and are harvested only seldom. Because of this, the majority of industrial applications 
employ algae strains with a lipid concentration of 20% to 40%. To maintain a high rate of division, 
diatoms can rely on their greater ability to fix CO2 than other phytoplanktonic groupings (Thomas 
et al., 1978). 
 

 
Fig.3. This figure shows how CO2 fixation product glucose is used for the lipid biosynthesis 
 
One of the main forces behind economic growth is energy. Because fossil fuels are running out and 
have negative environmental repercussions, humanity needs to develop sustainable and renewable 
energy sources. Carbon is an essential ingredient that controls microalgae growth and function. 
Different pathways are used by microalgae cells to assimilate various carbon sources. The CO2-
concentrating mechanisms (CCMs) mostly use inorganic carbon sources, while microalgae primarily 
absorb organic carbon sources via the Embden-Meyerhof-Pranas (EMP) and pentose phosphate 
pathways. Thus, microalgae mostly use the Pentose Phosphate Pathway (PPP) and the Embden-
Meyerhof-Pranas (EMP) Pathway to absorb the excess carbon input. As a result, the generation of 
microalgae biomass and lipid accumulation are significantly impacted by the addition of carbon 
sources (Xiangmeng et al., 2022). The processes of microalgal lipid synthesis and carbon absorption 
were described in this work; this process is shown in Fig. 3, and the effects of different carbon 
conditions (forms, quantities, and addition processes) on lipid formation during the production of 
biodiesel and microalgal biomass were extensively explored. 
 
The potential possibilities for the manufacture of biodiesel are also highlighted in this analysis, 
along with recent developments in the large-scale commercialization of microalgae lipid culture. 
Regarding the cost-benefit analysis of producing microalgae biodiesel on a wide scale. Practical 
solutions are suggested as well as current obstacles. The effectiveness of CO2 collection depends 
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on the kind of microalgae, the biochemical makeup of the nutrient medium, and environmental 
factors including light, humidity, and pH. This efficiency is influenced by the design of the 
developing system (open system/photobioreactor) (Nath et al., 2023). Microalgae may be 
cultivated in open or closed environments and need nutrients and carbon dioxide, which can come 
from burning fossil fuels or sewage. To quickly fix carbon into microalgae, researchers are also 
interested in CO2 collection through photosynthesis and how to use CO2 in different ways for 
humans. In these reviews, topics like genetic engineering and metabolic changes to improve CO2 
capture are covered, along with photosynthesis, CO2 fixing, and culture tactics for microalgae. 
 

 
Fig. 4. Classification of diatom lipids 
 
Table 1.  Table showing the type of fatty acids found in different diatom species 

Type of fatty acid found in different diatom species 

Species Linolenic Oleic Stearic Palmitic Linoleic Palmitoleic reference 

Chlorella vulgaris 21.3 18.7 14.1 5.6 - 5 
Velasquez-Orta et al. 

(2012) 

Spirulina platensis 17.79 4.11 1 41.21 12.64 3.39 Nautiyal et al. (2014a,b) 

Scenedesmus sp. 8.26 49.64 3.43 18.42 11.3 2.31 Chen et al. (2012a,b,c) 

Nannochloropsis salina 0.58 37.52 2.53 13.49 14.49 12.99 Patil et al. (2011) 

Caulerpa peltata - 5.04 4.58 36.82 18.19 5.04 Suganya et al. (2014) 

Enteromorpha 
compressa 

- 2.38 2.95 70.26 - 3.71 Suganya et al. (2013) 

 
Fatty Acid Profile 
Algal cells contain tightly packed lipid particles called TAGs in their cytoplasm. Saturated fatty acids 
such as stearic and palmitic acids and unsaturated fatty acids such as palmitoleic, oleic, linoleic, and 
linolenic acids make up the oil found in algae shown in Fig. 4. Most of the fatty acids in Scenedesmus 
obliquus oil are saturated and monounsaturated, according to Mandal and Mallick (2009), which 
provides biodiesel and generates a high level of oxidative stability. Table 1 compares the fatty acid 
content of biodiesel produced from several types of algae. Arachidonic acid, three polyunsaturated 
acids, docosahexaenoic acid, eicosapentaenoic acid, and algae are known to be generated in large 
quantities and may provide a problem for the generated biodiesel's stability (Frankel et al., 2002). 
Because the oil contains more unsaturated fatty acids, it lowers the pour point and cloud point of 
the biodiesel, improving its cold-temperature properties (Serdari et al., 1999; Stournas et al., 1995). 
 
 For biodiesel to function effectively, it needs to contain the right ratio of saturated and unsaturated 
fatty acids. This is because biodiesel made from highly unsaturated acids (polyunsaturated) loses 
stability. After all, it oxidizes more quickly than regular diesel and forms insoluble fragments. 
 
The Processes for Biofuel Production Using Algae vs. Crop Plants (First- and Second-Generation 
Sources)  
Algae offer a straightforward way for extracting fatty acids, and the process used to separate 
biodiesel on a small or experimental scale is mixing. While drying crops and other food-producing 
plants requires energy, drying algae with sunlight is more cost-effective. In contrast to other plants, 
the thermochemical drying process in algae is also simple (Banerjee et al., 2002; Tsukahara and 
Sawayama, 2005), as shown in Fig. 5. 
 
Algal biomass gathering and algal density 
Field samples were weighed for their entire dry weight. Microalgae were quantified per unit 
area/volume using a 1 m x 1 m quadrate and a 10 volume. A quadrate measuring 1 m x 1 m was used 
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to gather the macroscopic algal biomass from the lakes. At this location, these floating algae were 
thoroughly cleansed before being taken to the lab for further separation. The samples were 
carefully cleaned with deionized water following microscopic examination, and they were then 
concentrated by centrifuging additional lipid extraction. After carefully scraping the pellet with a 
spatula, it was let to air dry at room temperature. In case they were needed again, the samples were 
preserved.  
 
Table 2. An overview of how the FA profiles of marine animals have changed after being exposed 
to pollutants. Free fatty acids are denoted by FFA, saturated fatty acids by SFA, monounsaturated 
fatty acids by MUFA, and polyunsaturated fatty acids by PUFA. N/A indicates unavailable; N/I 
indicates little or no change in different diatom species. 

Contaminants of 
exposure 

(time/concentration) 

Contaminant's mode of 
action 

Species name SFA MUFA PUFA References 

Triazine 100 and 
150mg/l atrazine 

The quality of the 
photosynthetic activity of 
diatom cells is impacted 
by interference with the 

function of 
photosynthesis in plants, 

including some algae. 

Seminavisrobus
ta 

N/I N/I N/I 
De Hoop et al., 

(2013) 

1,2,4-
Trichlorobenzene 

(used in the 
production of 

organochlorine 
pesticides) 0.245mg/l 

5days 

over prolonged exposure 
periods, causes the most 
changes in morphology 

and fatty acid 
composition. 

Cyclotella 
meneghiniana 

16:0, 
15:0, 
18:00 

16:0 20:05 
Sicko-Goad et 

al. (1989a) 

1,3,5-
Trichlorobenzene: 

this chemical is 
utilized to make 
pesticides that 

contain chloroform. 
0.245 mg/l five days 

generates the highest 
amount of morphological 

and fatty acid 
composition changes in 
24 hours. modifies the 

ability of photosynthetic 
reaction and reduces 

cellular lipid stores 

Cyclotella 
meneghiniana 

16:00, 
18:00, 
14:00 

18:01 20:05 
Sicko-Goad et 

al. (1989b) 

1,2,3-
Trichlorobenzene: 

this chemical is used 
to make insecticides 

that contain 
chloroform. 0.245 

mg/l five days 

The steady rise in lipid 
volume, along with a 

reduction in the so-called 
"fibrous" vacuole and less 
notable alterations in the 

composition of FAs 

Cyclotella 
meneghiniana 

18:00 16:01 
0.83339

1204 
Sicko-Goad et 

al. (1989c) 

Pentachloro benzene, 
which is a raw 

material for 
organochlorine 

insecticides 0.245 
mg/l for five days 

causes alterations in 
diatom Lipid volume in 
diatoms is increased by 

FA content and cell shape. 

Cyclotella 
meneghiniana 

15:00, 
18:00 

18:01 20:05 
Sicko-Goad et 

al. (1989d) 

Chloroacetamide 
herbicide: 

metolachlor 20um 
added once 

Inhibition of long-chain 
fatty acid biosynthesis 

Melosira cf. 
moniliformis 

14:0, 
16:0, 
18:0 

6:1(n-7) 
18:1 (n-

7) 

16:2, 
16:3, 
16:4 
18:4 

(5,8,11,1
4) 18:5 

(5,8,11,1
4,17) 

Robert et al. 
(2007) 

PCBs, or 
polychlorinated 
biphenyls, N/A 

Growth suppression and 
alterations in the FA 

profile 

Thalassiosira 
pseudonana 

16:00 16:01 N/A 
Fisher and 

Schwarzenbach 
(1978) 

 
Why are diatoms used as biofuel? 
When we make biofuel from crops, the crop is harvested only once and gets destroyed; if we 
produce biofuel from algae, it can be reused. Ramachandra et al. (2009) mentioned in their review 
that just as a cow does not have to die to extract milk from it, similarly, lipid extraction can be done 
from algae (diatoms) without killing them. Ramachandra et al. (2009) compared the process of 
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extracting dairy milk to crushing cows and is accepted as inevitable. For example, many organisms, 
including photosynthetic microalgae, employ the same inputs. But unlike cows, you cannot milk 
them. It would help if you destroyed them (Lane, 2015). 
 
The demand for nitrogen/phosphorus fertilizers would be decreased or eliminated if only 
hydrocarbon high-value molecules (HVM) were milked (Rickman et al., 2013). The idea behind 
milking is that the cells shouldn't be killed during extraction. Because of this, milking eliminates the 
requirement for periodic culture and reestablishing of the entire algae stock, which usually takes a 
few hours to several weeks. 
 

 
Fig.5. Process of extraction of biodiesel from algal lipid 

 
What we now refer to as extraction was referred to as "milking" in some of the literature because 
the distinction between extraction and milking was not made (Zhang et al., 2011). Likewise, 
secretion and extraction were formerly included in the category of "milking" (Yadugiri et al., 2009). 
We believe that rigorous differentiation between these approaches will facilitate more fruitful 
discourse. 
 
When provides some food for thought regarding the progress of microalgae milking, specifically 
concerning diatoms, in the article. The main lines of reasoning that we have outlined to reach our 
goal are (a) the creation of substitute methods for harvesting and extracting HMV; (b) the 
construction and management of photobioreactors; (c) biochemistry; and (d) diatom (stress) 
physiology. In this contribution, they are addressed individually and, if feasible, accompanied by 
unique findings on the accumulation of lipids by diatoms. We call these algae "oleaginous diatoms." 
While most of the topics included in this contribution have been covered in recent reviews 
(Hildebrand et al., 2012; Hasunuma et al., 2014), none of them specifically addressed diatoms and 
milking. 
 
Algal oil extraction  
The secret of milking is to extract HVM without destroying the cells that produce it. In the case of 
higher plants, this idea was initially used in the milking of rubber 2000 years ago (Ciesielski 1999); 
maple syrup both historically (Svanberg et al., 2012) and prehistorically (Nearing and Nearing, 2000; 
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Munson 1989); turpentine dating back to Hippocrates (Haller, 1984); and more recently, halophilic 
bacteria (Saver and Galinski 1998; Van-Thuoc et al., 2010); and microalgae. 

Biocompatible solvents were employed in the initial applications with algae to extract HVM (Hejazi 
et al., 2004). Using organic solvents. (Gillet, 2015) recently computed the plasma membrane's 
molecular dynamics during milking. This section's goal is to offer a thorough examination of these 
options within the context of a milking strategy. Although heating and microwaving can cause 
damage in moderation, we do not think about them (Ghasemi Naghdi et al., 2014). However, they 
can also cause milking. 
 
Pulsed Electric Field 
 Diatoms and other microalgae have been electroporated, albeit mostly to enable genetic change. 
(Dunahay et al., 1992; Coll, 2006; Leon and Fernandez, 2007; Miyahara et al., 2013; Gao, 2014; 
Zhang, 2014). On the other hand, high-value compounds can also be released from cells more 
favorably by applying trains of electric pulses. Using this technique, electric pulses pierce cell 
membranes, causing the constituent parts of the cell to leak out. The technique was developed 
initially with yeast (Ganeva et al., 2003; Stirke et al., 2014) and more recently with photosynthetic 
organisms such as microalgae. (Coustets et al., 2013; Coustets et al., 2015) and cyanobacteria 
(Sheng et al., 2011). The "punctured" cells subsequently recover and continue to be alive, allowing 
the same batch of algae to be used again to extract more HVM (Reep and Green, 2012). Electric 
pulses can cause irreversible electroporation in bacteria (Joubert et al., 2013) algae (Antezana 
Zbinder et al., 2013) and mammal cells (Deipolyi et al., 2014). Therefore, choosing the electric 
pulses' length, intensity, polarity, repetition frequency, and other parameters requires striking a 
balance between milking efficiency and algal survival. 
 
Physical parameter adjustment is important since the strength of the electric therapy is directly 
proportional to the size of the cell, meaning that a smaller cell will have a greater effect. (Coustets 
et al., 2013; Sixou and Teissie, 1990; Bellard and Teissie, 2009). Diatoms, or microalgae, are 
beneficial for biofuel generation because of this. 
 
Spontaneous oozing  
There are now confidential reports indicating that certain bacteria (Tsukagoshi et al., 1983; Raetz, 
2001; Wald, 2015), green algae (Frenz et al., 1989), and cyanobacteria that have undergone genetic 
engineering (Liu et al., 2011; Joule, 2012; Robertson et al., 2011; Liu et al., 2011; Reppas and Ridley, 
2010) can secrete lipids (Ladd and Venter, 2010) from their cytoplasm into the surrounding 
environment. According to Vinayak et al. (2014), the mechanics underlying oozing are still 
unknown. The droplets gather in the cytoplasm (oleosomes) or the chloroplasts (plastoglobules). 
 
Mechanical Pressure 
One may infer that applying HVM leakage from algal cells could be caused by mechanical pressure, 
such as ultrasonic or tactile stimulation. that don't have a built-in oozing mechanism. Ultrasound 
has been employed in procedures to enhance lipid extraction of Chlorella vulgaris (Araujo et al., 
2013), like electric pulse treatment (Rosello-Soto et al., 2015).  
 
The ultrasonic treatment's parameters should be selected in a way that maintains the cells' viability 
and qualifies them for use in the milking process. For example, when comparing the yield attained 
without treatment, Araujo et al. (2013) reported that Chlorella vulgaris treated with ultrasound 
significantly improved in terms of lipid recovery. However, since only a slight improvement was 
noted, the treatment's effectiveness depends on the strength of the cell wall. Diatom cells are 
special in that they have a cell wall made of hydrated silicon dioxide, known as the frustule. The 
forms and embellishments of frustules vary greatly (Sterrenburg et al., 2007; Round et al., 1990). 
 
Additionally, one valve can fit inside the boundary of the other since one frustule is somewhat larger 
than the other. each diatom possesses defective bilateral symmetry. This, along with the frustule's 
resilience, makes mechanical approaches potentially one of the most potent ways to encourage the 
release of HVM. Testing the oozing capacity of more diatoms with an apical pore field (Kociolek and 
Stoermer, 1988) would be intriguing. We can presume that the force needed to shatter an isolated 
diatom valve is significantly less than the force needed to exert oil on a live diatom, even if this force 
has not yet been measured. The mechanical properties of several diatoms under tensile and 
compressive loads were published by (Hamm et al., 2003). Additionally, they mentioned that an 
isolated diatom valve had a breaking force of 750 μN.  
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Centrifugation  
We still don't know if the centrifugal force that kills them is less than the one that releases oil. In 
that case, centrifugation might be used as a method of milking. Algal separation is now 
accomplished by centrifugation (Abodeely et al., 2013). Lipids ascend to the centripetal end of sea 
urchin eggs centrifuged at 9000× g and exert sufficient buoyancy to split the egg in two (Anderson, 
1970). 
 
Fatty acid composition using GC–MS  
The component of fatty acids was assessed using mass spectrometry (Agilent Technologies 5975C 
insert MSD with triple-axis detector) and a gas chromatograph (Agilent Technologies 7890C, GC 
System). The injection and detector temperatures were maintained at 250°C and 280°C, 
respectively, in accordance with ASTM D 2800. A 1 ml injection of sample was made into the 
column, which had a starting temperature maintained at 40°C. The oven temperature was raised at 
a rate of 10 degrees Celsius per minute after one minute. Afterward, the oven was heated to 230°C 
at a rate of 3°C per minute, and then, at a rate of 10°C per minute, to 300°C, where it remained for 
two minutes. A silica column was loaded with the methylated sample utilizing split-free helium gas 
as the carrier. 47.667 minutes was the calculated run time. By comparing the obtained retention 
period to that of established standards, fatty acids were identified.  
 
Lipid extraction and biodiesel production 
After ethanol manufacturing, the wasted solids underwent the Soxhlet extraction procedure to 
separate the lipid for biodiesel synthesis. Less than 2% of the lipid recovered from algal biomass 
contained free fatty acids, it was discovered. To create a sodium methoxide solution, 50 ml of 
methanol was mixed with around 0.5 g of NaOH pellets to create biodiesel from the obtained lipid. 
Algal oil was next carefully incorporated with the sodium methoxide solution. 
 
Conclusion 
Microalgae are one of the most effective third-generation generating organisms at turning solar 
energy into chemical power, which is then utilized to absorb and transform atmospheric carbon 
dioxide into biomass. The principal source for biodiesel, microalgae, has demonstrated excellent 
application potential. The upstream cost limits lipid output from microalgae, which prevents large-
scale biofuel production from being realized. The focus of attempts to boost microalgae's lipid 
content and productivity over the past few decades has been on altering lipid-rich microalgae cells. 
Fatty acids may be extracted from algae using a straightforward process, and biodiesel can be 
separated on a small or experimental scale by mixing. While drying crops and plants that produce 
food requires energy, drying algae with sunlight is more cost-effective. In contrast to other plants, 
the process of thermochemical drying is also simple in algae. This work aligns with the Sustainable 
Development Goals (SDGs) 2030. Producing biofuel from microalgae (diatoms) instead of crops 
allows agricultural land to be used for food cultivation. This supports SDG Goal 2 of the 2030 
Agenda, which aims to end hunger, ensure food security and improved nutrition, and promote 
sustainable agriculture. 
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